Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Posts

(tagged with 'mass')

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
<<June 2024>>
SuMoTuWeThFrSa
      01
02030405060708
09101112131415
16171819202122
23242526272829
30      
new posts in all blogs
Viewing: Blog Posts Tagged with: mass, Most Recent at Top [Help]
Results 1 - 4 of 4
1. Measuring up

My first degree was in mathematics, where I specialised in mathematical physics. That meant studying notions of mass, weight, length, time, and so on. After that, I took a master’s and a PhD in statistics. Those eventually led to me spending 11 years working at the Institute of Psychiatry in London, where the central disciplines were medicine and psychology. Like physics, both medicine and psychology are based on measurements.

The post Measuring up appeared first on OUPblog.

0 Comments on Measuring up as of 10/7/2016 4:41:00 AM
Add a Comment
2. How does the Higgs mechanism create mass?

We’re celebrating the release of Higgs: The Invention and Discovery of the ‘God Particle’ with a series of posts by science writer Jim Baggott over the week to explain some of the mysteries of the Higgs boson. Read the previous posts: “What is the Higgs boson?”, “Why is the Higgs boson called the ‘god particle’?”, and “Is the particle recently discovered at CERN’s LHC the Higgs boson?”

By Jim Baggott


Through thousands of years of speculative philosophy and hundreds of years of hard empirical science, we have tended to think of mass as an innate property (a ‘primary quality’) of material substance. We figured that, whatever they might be, the basic building blocks of matter would surely consist of microscopic lumps of some kind of ‘stuff’.

But this is not quite how it has worked out. There was a clue in the title of one of Albert Einstein’s most famous research papers, published in 1905: ‘Does the inertia of a body depend on its energy content?’ This was the paper in which Einstein suggested that there was a deep connection between mass and energy, through what would subsequently become the world’s most famous equation, E = mc2.

We experience the mass of an object as inertia (the object’s resistance to acceleration) and Einstein was suggesting that the latter is determined not by mass as a primary quality, but rather by the energy that the object contains.

So, when an otherwise massless particle travelling at the speed of light interacts with the Higgs field, it is slowed down. The field ‘drags’ on it, as though the particle were moving through molasses. In other words, the energy of the interaction is manifested as a resistance to acceleration. The particle acquires inertia, and we think of this inertia in terms of the particle’s ‘mass’.

In the Higgs mechanism, mass loses its status as a primary quality. It becomes secondary — the result of massless particles interacting with the Higgs field.

So, does the Higgs mechanism explain all mass? Including the mass of me, you, and all the objects in the visible universe? No, it doesn’t. To see why, let’s just take a quick look at the origin of the mass of the heavy paperweight that sits on my desk in front of me.

The paperweight is made of glass. It has a complex molecular structure consisting primarily of a network of silicon and oxygen atoms bonded together. Obviously, we can trace its mass to the protons and neutrons which account for 99% of the mass of every silicon and oxygen atom in this structure.

According to the standard model, protons and neutrons are made of quarks. So, we might be tempted to conclude that the mass of the paperweight resides in the masses of the quarks from which the protons and neutrons are composed. But we’d be wrong again. Although it’s quite difficult to determine precisely the masses of the quarks, they are substantially smaller and lighter than the protons and neutrons that they comprise. We would estimate that the masses of the quarks, derived through their interaction with the Higgs field, account for only about 1% of the mass of a proton, for example.

But if 99% of the mass of a proton is not to be found in its constituent quarks, then where is it? The answer is that the rest of the proton’s mass resides in the energy of the massless gluons — the carriers of the strong nuclear force — that pass between the quarks and bind them together inside the proton.

What the standard model of particle physics tells us is quite bizarre. There appear to be ultimate building blocks which do have characteristic physical properties, but mass isn’t really one of them. Instead of mass we have interactions between elementary particles that would otherwise be massless and the Higgs field. These interactions slow the particles down, giving rise to inertia which we interpret as mass. As these elementary particles combine, the energy of the massless force particles passing between them builds, adding greatly to the impression of solidity and substance.

Jim Baggott is author of Higgs: The Invention and Discovery of the ‘God Particle’ and a freelance science writer. He was a lecturer in chemistry at the University of Reading but left to pursue a business career, where he first worked with Shell International Petroleum Company and then as an independent business consultant and trainer. His many books include Atomic: The First War of Physics (Icon, 2009), Beyond Measure: Modern Physics, Philosophy and the Meaning of Quantum Theory (OUP, 2003), A Beginner’s Guide to Reality (Penguin, 2005), and A Quantum Story: A History in 40 Moments (OUP, 2010). Read his previous blog posts.

On 4 July 2012, scientists at CERN’s Large Hadron Collider (LHC) facility in Geneva announced the discovery of a new elementary particle they believe is consistent with the long-sought Higgs boson, or ‘god particle’. Our understanding of the fundamental nature of matter — everything in our visible universe and everything we are — is about to take a giant leap forward. So, what is the Higgs boson and why is it so important? What role does it play in the structure of material substance? We’re celebrating the release of Higgs: The Invention and Discovery of the ‘God Particle’ with a series of posts by science writer Jim Baggott over the week to explain some of the mysteries of the Higgs. Read the previous posts: “What is the Higgs boson?”, “Why is the Higgs boson called the ‘god particle’?”, and “Is the particle recently discovered at CERN’s LHC the Higgs boson?”

Subscribe to the OUPblog via email or RSS.
Subscribe to only physics and chemistry articles on the OUPblog via email or RSS.
View more about this book on the  

0 Comments on How does the Higgs mechanism create mass? as of 9/6/2012 4:59:00 AM
Add a Comment
3. Where have all the Catholic writers gone?

I strongly disagree with the idea that “the Christian faith [has] been in full cultural retreat since the 1960s,” but still recommend Robert Fay’s essay about the dearth of Catholic novels after the translation of the Latin Mass.

Add a Comment
4. Dangerous thoughts


I can’t help but to keep thinking of all the religious strife that covers this planet all in the name of the all mighty.

I wonder how anything in this little place can be of any more significance

to that which is everything.

If one proton of one atom in my body has a billion solar systems in it’s being and one place there less than a speck of sand has beings living on it and they are made up of the same thing as I or I am made up of it because the speck and the me are one thing, inseparable except by my casting it out but I am all things so when I cast it out there is no place but back in to me it must go to be mixed again in an ever-changing, roiling mass of energy as known by me but which is unknowable to the speck. The total is me yet the speck is me.

I do not want to kill myself, I only want to let the speck change to my benefit. My purpose is only to be and the only battle should be against that opposite, not to be.

Perhaps Shakey Spear had it more right than is given credit except to be or not to be is not the question, it is the answer.

0 Comments on Dangerous thoughts as of 1/1/1900
Add a Comment