What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Posts

(tagged with 'microorganisms')

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: microorganisms, Most Recent at Top [Help]
Results 1 - 2 of 2
1. The lake ecosystems of the Antarctic

Antarctica is a polar desert almost entirely covered by a vast ice sheet up to four km in thickness. The great white continent is a very apt description. The ice-free areas, often referred to as oases, carry obvious life in lakes and occasional small patches of lichen and mosses where there is sufficient seasonal melt water to support them. The majority of ice-free areas lie on the coastal margins of the continent, but there is a large inland ice-free region called the McMurdo Dry Valleys. 

On the face of it Antarctica would appear to offer little in the way of excitement for anyone interested in the physical, chemical, and biological characteristics of lakes. However, surprisingly Antarctica possesses the most diverse array of lakes types on the planet. The ice-free areas, which are bare rock, carry freshwater lakes and saline lakes, some as salty as the Dead Sea. Between land and ice shelves there are remarkable so-called epishelf freshwater lakes, that sit on seawater or are connected to the sea by a conduit and are consequently tidal. Underneath the vast ice sheet there are numerous subglacial lakes, around 380 at last count, of which Lakes Vostoc, Whillans, and Ellsworth are the best known. Ice shelves that occur around the edge of the continent overlying the sea, carry shallow lakes and ponds on their surface, and there are lakes on many of the glaciers. Some of these are short-lived and drain through holes called moulins to the glacier base, while others are several thousands of years old.

Antarctic lakes are extreme environments where only the most robust and adaptable organisms survive. Temperatures are always close to freezing and in saline lakes can fall below zero. While there is 24-hour daylight in summer, in winter the sun does not rise above the horizon, so the Sun’s light energy that drives the growth of the phytoplankton through photosynthesis is much lower on an annual basis than at our latitudes. The food webs of these lakes are truncated; there are few zooplankton and no fish. They are systems dominated by microorganisms: microscopic algae, protozoa, bacteria, and viruses. All of the lakes apart from the most saline have ice covers, that can be up to five metres thick. Lakes on the coastal margins usually lose part or all of their ice covers for a few weeks each summer, but the inland more southerly lakes of the McMurdo Dry Valleys have thick perennial ice covers that contain rocks and dust that have blown off the surrounding hills. This ‘dirty’ ice allows very little light to penetrate to the underlying water column, so the photosynthetic organisms that live there are adapted to extreme shade.

640px-Miers_Valley_CKL
Miers Valley in the McMurdo Dry Valleys area. Photo by Saxphile. CC BY 3.0 via Wikimedia Commons.

It would be reasonable to assume that during the austral winter biological processes in lake waters shut down. However, that is not the case; life goes on even in the darkness of winter. Bacteria manage to grow at low temperatures and many of the photosynthetic microorganisms become heterotrophic. They eat bacteria or take up dissolved organic carbon and are described as mixotrophic (meaning mixed nutrition). In this way they can hit the deck running when the short austral summer arrives and they can resume photosynthesis. Even the few crustacean zooplankton stay active in winter and don’t exploit resting eggs or diapause. They are crammed full with fat globules, which together with any food they can exploit takes them through the winter. Their fecundity is very low compared to their temperate relatives, but with no fish predators they can sustain a population.

Shallow lakes and ponds on ice shelves and glaciers freeze to their bases in winter. Thus their biotas have to be able to withstand freezing and in the case of saline ponds, increasing salinity as salts are excluded from the formation of ice.

The most topical and currently exciting lakes are the subglacial lakes kilometres under the ice sheet. These represent the modern age of polar exploration because gaining entry to these lakes presents major logistic challenges. One of the major issues is ensuring that the collected samples are entirely sterile and not contaminated with microorganisms from the surface. Subglacial lakes have been separated from the atmosphere for millions of years and potentially harbour unique microorganisms. In the past few years the US Antarctic programme has successfully penetrated Lake Whillans and demonstrated that it contains a diverse assemblage of Bacteria and Archaea in a chemosynthetically driven ecosystem (Christner et al. 2014). The British attempt to penetrate Lake Ellsworth was unsuccessful, but there are plans to continue the exploration of this lake in the future. In the coming years these extraordinary aquatic ecosystems will reveal more of their secrets.

The delicate surface lake ecosystems of Antarctica appear to respond rapidly to local climatic variations and where there are long-term data sets, as there are for the McMurdo Dry Valleys, to global climatic change. Unlike lakes at lower latitudes they are removed from the direct effects of Man’s activities that have changed catchment hydrology, and imposed industrial and agricultural pollution. Antarctic lakes are subject to the indirect anthropogenic effects of ozone depletion and climate warming. The impact of these factors can be seen without the superimposition of direct man-made effects. Consequently polar lakes, including those in the Arctic, can be regarded as sentinels of climate change.

Headline image credit: Lake Fryxell in the Transantarctic Mountains. Photo by Joe Mastroianni, Antarctic Photo Library, National Science Foundation. CCO via Wikimedia Commons

The post The lake ecosystems of the Antarctic appeared first on OUPblog.

0 Comments on The lake ecosystems of the Antarctic as of 12/8/2014 5:39:00 AM
Add a Comment
2. Microbes matter

By John Archibald


We humans have a love-hate relationship with bugs. I’m not talking about insects — although many of us cringe at the thought of them too — but rather the bugs we can’t see, the ones that make us sick.

Sure, microorganisms give us beer, wine, cheese, and yoghurt; hardly a day goes by without most people consuming food or drink produced by microbial fermentation. And we put microbes to good use in the laboratory, as vehicles for the production of insulin and other life-saving drugs, for example.

But microbes are also responsible for much of what ails us, from annoying stomach ‘bugs’ to deadly infectious diseases such as tuberculosis and plague. Bacteria and viruses are even linked to certain cancers. Bugs are bad; antibiotics and antivirals are good. We spend billions annually trying to rid ourselves of microorganisms, and if they were to all disappear, well, all the better, right?

This is, of course, nonsense. Even the most ardent germaphobe would take a deep breath and accept the fact that we could no more survive without microbes than we could without oxygen. No matter how clean we strive to be, there are 100 trillion bacterial cells living on and within our bodies, 10 times the number of human cells that comprise ‘us’. Hundreds of different bacterial species live within our intestines, hundreds more thrive in our mouths and on our skin. Add in the resident viruses, fungi, and small animals such as worms and mites, and the human body becomes a full-blown ecosystem, a microcosm of the world around us. And like any ecosystem, if thrown off-balance bad things can happen. For example, many of our ‘good’ bacteria help us metabolize food and fight off illness. But after a prolonged course of antibiotics such bacteria can be knocked flat, and normally benign species such as ‘Clostridium difficile’ can grow out of control and cause disease.

virus-163471_1280

Given the complexity of our body jungle, some researchers go as far as to propose that there is no such thing as a ‘human being’. Each of us should instead be thought of as a human-microbe symbiosis, a complex biological relationship in which neither partner can survive without the other. As disturbing a notion as this may be, one thing is indisputable: we depend on our microbiome and it depends on us.

And there is an even more fundamental way in which the survival of Homo sapiens is intimately tied to the hidden microbial majority of life. Each and every one of our 10 trillion cells betrays its microbial ancestry in harboring mitochondria, tiny subcellular factories that use oxygen to convert our food into ATP, the energy currency of all living cells. Our mitochondria are, in essence, domesticated bacteria — oxygen-consuming bacteria that took up residence inside another bacterium more than a billion years ago and never left. We know this because mitochondria possess tiny remnants of bacterium-like DNA inside them, distinct from the DNA housed in the cell nucleus. Modern genetic investigations have revealed that mitochondria are a throwback to a time before complex animals, plants, or fungi had arisen, a time when life was exclusively microbial.

As we ponder the bacterial nature of our mitochondria, it is also instructive to consider where the oxygen they so depend on actually comes from. The answer is photosynthesis. Within the cells of plants and algae are the all-important chloroplasts, green-tinged, DNA-containing factories that absorb sunlight, fix carbon dioxide, and pump oxygen into the atmosphere by the truckload. Most of the oxygen we breathe comes from the photosynthetic activities of these plants and algae—and like mitochondria, chloroplasts are derived from bacteria by symbiosis. The genetic signature written within chloroplast DNA links them to the myriad of free-living cyanobacteria drifting in the world’s oceans. Photosynthesis and respiration are the biochemical yin and yang of life on Earth. The energy that flows through chloroplasts and mitochondria connects life in the furthest corners of the biosphere.

For all our biological sophistication and intelligence, one could argue that we humans are little more than the sum of the individual cells from which we are built. And as is the case for all other complex multicellular organisms, our existence is inexorably linked to the sea of microbes that share our physical space. It is a reality we come by honestly. As we struggle to tame and exploit the microbial world, we would do well to remember that symbiosis—the living together of distinct organisms—explains both what we are and how we got here.

John Archibald is Professor of Biochemistry and Molecular Biology at Dalhousie University and a Senior Fellow of the Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity. He is an Associate Editor for Genome Biology & Evolution and an Editorial Board Member of various scientific journals, including Current Biology, Eukaryotic Cell, and BMC Biology. He is the author of One Plus One Equals One: Symbiosis and the Evolution of Complex Life.

Subscribe to the OUPblog via email or RSS.
Subscribe to only science and medicine articles on the OUPblog via email or RSS.

Image credit: Virus Microbiology. Public domain via Pixabay

The post Microbes matter appeared first on OUPblog.

0 Comments on Microbes matter as of 7/25/2014 6:50:00 AM
Add a Comment