What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Posts

(tagged with 'cytosine')

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: cytosine, Most Recent at Top [Help]
Results 1 - 1 of 1
1. SciWhys: What is DNA and what does it do?

Today we’d like to introduce our latest regular OUPblog column: SciWhys. Every month OUP editor and author Jonathan Crowe will be answering your science questions. Got a burning question about science that you’d like answered? Just email it to us, and Jonathan will answer what he can. Kicking us off: What is DNA and what does it do?

By Jonathan Crowe


We’ve all heard of DNA, and probably know that it’s ‘something to do with our genes’. But what actually is DNA, and what does it do? At the level of chemistry, DNA – or deoxyribonucleic acid, to give it its full name – is a collection of carbon, hydrogen, oxygen, nitrogen and phosphorus atoms, joined together to form a large molecule. There is nothing that special about the atoms found in a molecule of DNA: they are no different from the atoms found in the thousands of other molecules from which the human body is made. What makes DNA special, though, is its biological role: DNA stores information – specifically, the information needed by a living organism to direct its correct growth and function.

But how does DNA, simply a collection of just a few different types of atom, actually store information? To answer this question, we need to consider the structure of DNA in a little more detail. DNA is like a long, thin chain – a chain that is constructed from a series of building blocks joined end-to-end. (In fact, a molecule of DNA features two chains, which line up side-by-side. But we only need to focus on one of these chains to be able to understand how DNA stores its information.)

There are only four different building blocks; these are represented by the letters A, C, G and T. (Each building block has three component parts; one of these parts is made up of one of four molecules: adenine, cytosine, guanine or thymine. It is these names that give rise to letters used to represent the four complete building blocks themselves.) A single DNA molecule is composed of a mixture of these four building blocks, joined together one by one to form a long chain – and it is the order in which the four building blocks are joined together along the DNA chain that lies at the heart of DNA’s information-storing capability.

The order in which the four building blocks appear along a DNA molecule determines what we call its ‘sequence’; this sequence is represented using the single-letter shorthand mentioned above. If we imagine that we had a very small DNA molecule that is composed of just eight building blocks, and these blocks were joined together in the order cytosine-adenine-cytosine-guanine-guanine-thymine-adenine-cytosine, the sequence of this DNA molecule would be CACGGTAC.

The biological information stored in a DNA molecule depends upon the order of its building blocks – that is, its sequence. If a DNA sequence changes, so too does the information it contains. On reflection, this concept – that the order in which a selection of items appears in a linear sequence affects the information stored in that sequence – may not be as alien to us as it might first seem. Indeed, it is the concept on which written communication is based: each sentence in this blog post is composed of a selection of items – the letters of the alphabet – appearing in different sequences. These different sequences of letters spell out different words, which convey different information to the reader.

And so it is with the sequence of DNA: as the sequence of the four building blocks of DNA varies, so too does the information being conveyed. (You may well be asking how the information stored in DNA is actually interpreted – how it actually determines how an organism develops and functions – but that’s a topic for a different blog post.)

You may be wondering how on earth ju

0 Comments on SciWhys: What is DNA and what does it do? as of 1/1/1900
Add a Comment