What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Posts

(tagged with 'journal of complex networks')

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: journal of complex networks, Most Recent at Top [Help]
Results 1 - 2 of 2
1. What do rumors, diseases, and memes have in common?

Are you worried about catching the flu, or perhaps even Ebola? Just how worried should you be? Well, that depends on how fast a disease will spread over social and transportation networks, so it’s obviously important to obtain good estimates of the speed of disease transmission and to figure out good containment strategies to combat disease spread.

Diseases, rumors, memes, and other information all spread over networks. A lot of research has explored the effects of network structure on such spreading. Unfortunately, most of this research has a major issue: it considers networks that are not realistic enough, and this can lead to incorrect predictions of transmission speeds, which people are most important in a network, and so on. So how does one address this problem?

Traditionally, most studies of propagation on networks assume a very simple network structure that is static and only includes one type of connection between people. By contrast, real networks change in time  one contacts different people during weekdays and on weekends, one (hopefully) stays home when one is sick, new University students arrive from all parts of the world every autumn to settle into new cities. They also include multiple types of social ties (Facebook, Twitter, and – gasp – even face-to-face friendships), multiple modes of transportation, and so on. That is, we consume and communicate information through all sorts of channels. To consider a network with only one type of social tie ignores these facts and can potentially lead to incorrect predictions of which memes go viral and how fast information spreads. It also fails to allow differentiation between people who are important in one medium from people who are important in a different medium (or across multiple media). In fact, most real networks include a far richer “multilayer” structure. Collapsing such structures to obtain and then study a simpler network representation can yield incorrect answers for how fast diseases or ideas spread, the robustness level of infrastructures, how long it takes for interaction oscillators to synchronize, and more.

mobile-phone-426559_640
Image credit: Mobile Phone, by geralt. Public domain via Pixabay.

Recently, an increasingly large number of researchers are studying mathematical objects called “multilayer networks”. These generalize ordinary networks and allow one to incorporate time-dependence, multiple modes of connection, and other complexities. Work on multilayer networks dates back many decades in fields like sociology and engineering, and of course it is well-known that networks don’t exist in isolation but rather are coupled to other networks. The last few years have seen a rapid explosion of new theoretical tools to study multilayer networks.

And what types of things do researchers need to figure out? For one thing, it is known that multilayer structures induce correlations that are invisible if one collapses multilayer networks into simpler representations, so it is essential to figure out when and by how much such correlations increase or decrease the propagation of diseases and information, how they change the ability of oscillators to synchronize, and so on. From the standpoint of theory, it is necessary to develop better methods to measure multilayer structures, as a large majority of the tools that have been used thus far to study multilayer networks are mostly just more complicated versions of existing diagnostic and models. We need to do better. It is also necessary to systematically examine the effects of multilayer structures, such as correlations between different layers (e.g., perhaps a person who is important for the social network that is encapsulated in one layer also tends to be important in other layers?), on different types of dynamical processes. In these efforts, it is crucial to consider not only simplistic (“toy”) models — as in most of the work on multilayer networks thus far — but to move the field towards the examination of ever more realistic and diverse models and to estimate the parameters of these models from empirical data. As our review article illustrates, multilayer networks are both exciting and important to study, but the increasingly large community that is studying them still has a long way to go. We hope that our article will help steer these efforts, which promise to be very fruitful.

The post What do rumors, diseases, and memes have in common? appeared first on OUPblog.

0 Comments on What do rumors, diseases, and memes have in common? as of 11/3/2014 3:19:00 AM
Add a Comment
2. Special events and the dynamical statistics of Twitter

A large variety of complex systems in ecology, climate science, biomedicine, and engineering have been observed to exhibit so-called tipping points, where the dynamical state of the system abruptly changes. Typical examples are the rapid transition in lakes from clear to turbid conditions or the sudden extinction of species after a slightly change of environmental conditions. Data and models suggest that detectable warning signs may precede some, though clearly not all, of these drastic events. This view is also corroborated by recently developed abstract mathematical theory for systems, where processes evolve at different rates and are subject to internal and/or external stochastic perturbations.

One main idea to derive warning signs is to monitor the fluctuations of the dynamical process by calculating the variance of a suitable monitoring variable. When the tipping point is approached via a slowly-drifting parameter, the stabilizing effects of the system slowly diminish and the noisy fluctuations increase via certain well-defined scaling laws.

Based upon these observations, it is natural to ask, whether these scaling laws are also present in human social networks and can allow us to make predictions about future events. This is an exciting open problem, to which at present only highly speculative answers can be given. It is indeed to predict a priori unknown events in a social system. Therefore, as an initial step, we try to reduce the problem to a much simpler problem to understand whether the same mechanisms, which have been observed in the context of natural sciences and engineering, could also be present in sociological domains.

Courtesy of Christian Kuehn.
Courtesy of Christian Kuehn.

In our work, we provide a very first step towards tackling a substantially simpler question by focusing on a priori known events. We analyse a social media data set with a focus on classical variance and autocorrelation scaling law warning signs. In particular, we consider a few events, which are known to occur on a specific time of the year, e.g., Christmas, Halloween, and Thanksgiving. Then we consider time series of the frequency of Twitter hashtags related to the considered events a few weeks before the actual event, but excluding the event date itself and some time period before it.

Now suppose we do not know that a dramatic spike in the number of Twitter hashtags, such as #xmas or #thanksgiving, will occur on the actual event date. Are there signs of the same stochastic scaling laws observed in other dynamical systems visible some time before the event? The more fundamental question is: Are there similarities to known warning signs from other areas also present in social media data?

We answer this question affirmatively as we find that the a priori known events mentioned above are preceded by variance and autocorrelation growth (see Figure). Nevertheless, we are still very far from actually using social networks to predict the occurrence of many other drastic events. For example, it can also be shown that many spikes in Twitter activity are not predictable through variance and autocorrelation growth. Hence, a lot more research is needed to distinguish different dynamical processes that lead to large outburst of activity on social media.

The findings suggest that further investigations of dynamical processes in social media would be worthwhile. Currently, a main focus in the research on social networks lies on structural questions, such as: Who connects to whom? How many connections do we have on average? Who are the hubs in social media? However, if one takes dynamical processes on the network, as well as the changing dynamics of the network topology, into account, one may obtain a much clearer picture, how social systems compare and relate to classical problems in physics, chemistry, biology and engineering.

The post Special events and the dynamical statistics of Twitter appeared first on OUPblog.

0 Comments on Special events and the dynamical statistics of Twitter as of 8/27/2014 4:05:00 AM
Add a Comment