What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Posts

(tagged with 'large hadron collider')

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: large hadron collider, Most Recent at Top [Help]
Results 1 - 3 of 3
1. CERN: glorious past, exciting future

Today, 60 years ago, the visionary convention establishing the European Organization for Nuclear Research – better known with its French acronym, CERN – entered into force, marking the beginning of an extraordinary scientific adventure that has profoundly changed science, technology, and society, and that is still far from over.

With other pan-European institutions established in the late 1940s and early 1950s — like the Council of Europe and the European Coal and Steel Community — CERN shared the same founding goal: to coordinate the efforts of European countries after the devastating losses and large-scale destruction of World War II. Europe had in particular lost its scientific and intellectual leadership, and many scientists had fled to other countries. Time had come for European researchers to join forces towards creating of a world-leading laboratory for fundamental science.

Sixty years after its foundation, CERN is today the largest scientific laboratory in the world, with more than 2000 staff members and many more temporary visitors and fellows. It hosts the most powerful particle accelerator ever built. It also hosts exhibitions, lectures, shows, meetings, and debates, providing a forum of discussion where science meets industry and society.

What has happened in these six decades of scientific research? As a physicist, I should probably first mention the many ground-breaking discoveries in Particle Physics, such as the discovery of some of the most fundamental building block of matter, like the W and Z bosons in 1983; the measurement of the number of neutrino families at LEP in 1989; and of course the recent discovery of the Higgs boson in 2012, which prompted the Nobel Prize in Physics to Peter Higgs and Francois Englert in 2013.

But looking back at the glorious history of this laboratory, much more comes to mind: the development of technologies that found medical applications such as PET scans; computer science applications such as globally distributed computing, that finds application in many fields ranging from genetic mapping to economic modeling; and the World Wide Web, that was developed at CERN as a network to connect universities and research laboratories.

CERN Control Center (2).jpg
“CERN Control Center (2)” by Martin Dougiamas – Flickr: CERN control center. Licensed under CC BY 2.0 via Wikimedia Commons.

If you’ve ever asked yourself what such a laboratory may look like, especially if you plan to visit it in the future and expect to see building with a distinctive sleek, high-tech look, let me warn you that the first impression may be slightly disappointing. When I first visited CERN, I couldn’t help noticing the old buildings, dusty corridors, and the overall rather grimy look of the section hosting the theory institute. But it was when an elevator brought me down to visit the accelerator that I realized what was actually happening there, as I witnessed the colossal size of the detectors, and the incredible degree of sophistication of the technology used. ATLAS, for instance, is a 25 meters high, 25 meters wide and 45 meters long detector, and it weighs about 7,000 tons!

The 27-km long Large Hadron Collider is currently shut down for planned upgrades. When new beams of protons will be circulated in it at the end of 2014, it will be at almost twice the energy reached in the previous run. There will be about 2800 bunches of protons in its orbit, each containing several hundred billion protons, separated by – as in a car race, the distance between bunches can be expressed in units of time – 250 billionths of a second. The energy of each proton will be compared to that of a flying mosquito, but concentrated in a single elementary particle. And the energy of an entire bunch of protons will be comparable to that of a medium-sized car launched at highway speed.

Why these high energies? Einstein’s E=mc2 tells us that energy can be converted to mass, so by colliding two protons with very high energy, we can in principle produce very heavy particles, possibly new particles that we have never before observed. You may wonder why we would expect that such new particles exist. After all we have already successfully created Higgs bosons through very high-energy collisions, what can we expect to find beyond that? Well, that’s where the story becomes exciting.

Some of the best motivated theories currently under scrutiny in the scientific community – such as Supersymmetry – predict that not only should new particles exist, but they could explain one of the greatest mysteries in Cosmology: the presence of large amounts of unseen matter in the Universe, which seem to dominate the dynamics of all structures in the Universe, including our own Milky Way galaxy — Dark Matter.

Identifying in our accelerators the substance that permeates the Universe and shapes its structure would represent an important step forward in our quest to understand the Cosmos, and our place in it. CERN, 60 years and still going strong, is rising up to challenge.

Headline image credit: An example of simulated data modeled for the CMS particle detector on the Large Hadron Collider (LHC) at CERN. Image by Lucas Taylor, CERN. CC BY-SA 3.0 via Wikimedia Commons.

The post CERN: glorious past, exciting future appeared first on OUPblog.

0 Comments on CERN: glorious past, exciting future as of 1/1/1900
Add a Comment
2. Science Oxford Webcast

On Tuesday I gave my Starstuff & Supergiants talk at Science Oxford, as part of the Oxfordshire Science Festival. In a way it was a bit of the science behind the Johnny Mackintosh stories. I spoke about how the speed of light is a universal speed limit and time travel is (perhaps) a one-way street, and how the large hadron collider is a time machine (as well as everything else). I explained how stars are the atom factories of the universe and talked about the way stars die, sometimes in a supernova (what readers will realize the alien races of the galaxy call Star Blaze). Thanks to everyone at Science Oxford for giving me the opportunity, and to all those who came out on a Tuesday night to listen. If anyone missed it, there is no escape. The whole thing is available as a webcast from the Science Oxford site.

The talk was very much a tribute to Carl Sagan and I was pleased to give Chandra a namecheck as well. I enjoyed it – hope you all do too.


Add a Comment
3. Big Answers With A Big Bang

Frank Close, OBE, is Professor of Physics at Oxford University and a Fellow of Exeter College. He was formerly vice president of the British Association for the Advancement of Science, Head of the Theoretical Physics Division at the Rutherford Appleton Laboratory, and Head of Communications and Public Education at CERN. He received the Institute of Physics’ Kelvin Medal in 1996, awarded for outstanding contributions to the public understanding of physics. He is the author of The Void, Very Short Introduction to Particle Physics, The Particle Odyssey and many more.  Also, look for Antimatter in January, Close’s newest book.

We asked Close to explain the importance of the Large Hadron Collider to us.  He kindly sent us the post below and the following analogy, comparing the journey for answers about the origin of the universe to sewing a tapestry:  “The quest is like sewing a tapestry, but one where the picture is only revealed as you do so. First you have to make a needle, then feed it with thread and then finally start sewing. It took 20 years to design and build the needle. Last Wednesday we started to put thread through the needle’s eye. It will take some time before we have enough thread, tightly enough wrapped and in sufficient colors to start sewing. That will be later this year or next spring. If we are lucky there may be some parts of the picture where the image quickly comes clear; other parts of the picture may take a lot of time and careful work before the images can be discerned.”

Keep reading to find out the answers this tapestry may hold.

Only nature knows what happened in the long-ago dawn of the Big Bang; but soon humans will too. The visions of the new world will hopefully be tomorrow’s stories. If you want a machine to show how the universe was in the moments of creation, you don’t find it in the scientific instrument catalogs: you have to build it yourself. And so scientists and engineers around the world pooled their knowledge to build the Large Hadron Collider (LHC).

Immediately there were problems. Beyond the ability of a single continent, this became a truly global endeavor; unparalleled in ambition, in political and financial challenges. At its conception, the state of the art in cryogenics, magnets, information technology, and a whole range of technologies was far short of what would be required for the LHC to work. The whole enterprise relied on the belief that bright ideas would emerge to solve problems, any one of which could have proved a show-stopper. There were many who feared that particle physics had bitten off more than it could chew; that the LHC was over-ambitious; that this would be the end of physics.

Now we are almost there. Wednesday, Sept 10 when the current was turned on, and for the first time a beam of protons circulated through the vacuum tubes colder than outer space, was just the start. The next step will be to send two beams, in opposite directions – well, that’s been done but not yet intensely enough to smash into one another and produce data. That is still for the future. At first, and for some months, they are likely to be too diffuse and low energy to produce anything of great use to science. Only later when high energy intense beams collide, and the debris from those mini-bangs pour through the gargantuan detectors, which in turn speed signals to the waiting computers, will the moment we’ve waited for have arrived. A year or two accumulating data and the first answers to the big questions will begin to emerge.

The seeds of matter were created in the aftermath of the Big Bang: quarks, which clustered together making protons and neutrons as the newborn universe cooled, and the electron, which today is found in the outer reaches of atoms. We and everything hereabouts are made of atoms. In the sun and stars intense heat rips atoms apart into their constituents, electrons, protons and neutrons.

By colliding beams of particles, such as electrons or protons, head-on, it is possible to simulate the high-energy hot conditions of the stars and the early universe. At CERN (European Council for Nuclear Research) in the 1980s a machine called LEP (Large Electron Positron collider) collided electrons and their antimatter analogues, positrons, fast enough that they mutually annihilated and created for brief moments in a region smaller than an atom, the conditions that occurred within a billionth of a second of the Big Bang. Trying to reach time zero is like finding the end of the rainbow, and the LHC will take us ten to a hundred times further than ever before. At the LHC the beams of protons will pack a bigger punch and their collisions will show how the universe was at its infancy and perhaps give us some insight to how the universe evolved.

Within a billionth of a second after the Big Bang, the material particles from which we are made, and the disparate forces that act on them, had become encoded into the fabric of the universe. However, the events that led our universe to win the lottery of life were decided earlier than this. Some of them we believe occurred in the epoch that is now within our reach. That is what the LHC promises to reveal.

As the 21st century begins, physics can explain almost all of the fundamental phenomena revealed in the search for our origins, yet there are niggling loose ends. We see hints of a unified theory vaguely in the shadows, but what it is and how the structures that led to the particles and forces that molded us are still perceived only vaguely.

Why are there three spatial dimensions; could there be more? Cosmology suggests that “normal matter” is but one percent of the whole, and that we are but flotsam on a sea of “dark matter”. What that dark sea consists of, how it was formed, why there is any matter at all rather than a hellish ferment of radiation, are unknown.

Why is there structure and solidity to matter when our theories would be happier if everything flitted around at the speed of light? Theorists believe that all structure and ultimately the solidity of matter are the result of a field of force that today permeates the universe known as the Higgs field. This can be made to reveal itself if the conditions are right. For example, as an electromagnetic field can be stimulated to send out electromagnetic waves, so can the Higgs field create waves. However to create these waves requires huge energy. The LHC has been designed to achieve these conditions. As an electromagnetic wave comes in quantum bundles, particles known as photons, so the Higgs waves will come in the form of particles known as Higgs bosons.

There is also the question: why there is anything at all? In the beginning there was nothing: “there was darkness on the face of the void”. Then came a burst of energy: “let there be light and there was light”, though from where it came no-one knows. What we do know is what happened next: this energy coagulated into matter and its mysterious opposite, antimatter, in perfect balance. Anti-matter destroys anything it touches in a pyrotechnic flash. So how did the early universe manage to survive self-annihilation between the newly born matter and antimatter? Something as yet unknown must have occurred in those first moments to upset the balance. For several years we have glimpsed a subtle asymmetry between arcane forms of matter and antimatter made from “strange” and “bottom” quarks and antiquarks. One of the goals of the LHC will be to produce large numbers of particles of bottom matter and their antimatter counterparts in the hope of finding the source of the asymmetry between matter and antimatter.

Ultimately however, this is a voyage of discovery into a world that once existed but was lost in the sands of time, 13.6 billion years ago. Like some astonishing Jurassic Park, the LHC will show once more what that epoch was like. We have ideas of what is to be found, and there are certainly questions, such as those above, whose answers we crave. But in focusing on them like this we are getting ahead of ourselves. We are at the stage of witnessing remarkable engineering, and it is those we should be applauding; as for discoveries in fundamental science – watch this space.

ShareThis

4 Comments on Big Answers With A Big Bang, last added: 9/29/2008
Display Comments Add a Comment