What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: higgs field, Most Recent at Top [Help]
Results 1 - 2 of 2
1. How does the Higgs mechanism create mass?

We’re celebrating the release of Higgs: The Invention and Discovery of the ‘God Particle’ with a series of posts by science writer Jim Baggott over the week to explain some of the mysteries of the Higgs boson. Read the previous posts: “What is the Higgs boson?”, “Why is the Higgs boson called the ‘god particle’?”, and “Is the particle recently discovered at CERN’s LHC the Higgs boson?”

By Jim Baggott


Through thousands of years of speculative philosophy and hundreds of years of hard empirical science, we have tended to think of mass as an innate property (a ‘primary quality’) of material substance. We figured that, whatever they might be, the basic building blocks of matter would surely consist of microscopic lumps of some kind of ‘stuff’.

But this is not quite how it has worked out. There was a clue in the title of one of Albert Einstein’s most famous research papers, published in 1905: ‘Does the inertia of a body depend on its energy content?’ This was the paper in which Einstein suggested that there was a deep connection between mass and energy, through what would subsequently become the world’s most famous equation, E = mc2.

We experience the mass of an object as inertia (the object’s resistance to acceleration) and Einstein was suggesting that the latter is determined not by mass as a primary quality, but rather by the energy that the object contains.

So, when an otherwise massless particle travelling at the speed of light interacts with the Higgs field, it is slowed down. The field ‘drags’ on it, as though the particle were moving through molasses. In other words, the energy of the interaction is manifested as a resistance to acceleration. The particle acquires inertia, and we think of this inertia in terms of the particle’s ‘mass’.

In the Higgs mechanism, mass loses its status as a primary quality. It becomes secondary — the result of massless particles interacting with the Higgs field.

So, does the Higgs mechanism explain all mass? Including the mass of me, you, and all the objects in the visible universe? No, it doesn’t. To see why, let’s just take a quick look at the origin of the mass of the heavy paperweight that sits on my desk in front of me.

The paperweight is made of glass. It has a complex molecular structure consisting primarily of a network of silicon and oxygen atoms bonded together. Obviously, we can trace its mass to the protons and neutrons which account for 99% of the mass of every silicon and oxygen atom in this structure.

According to the standard model, protons and neutrons are made of quarks. So, we might be tempted to conclude that the mass of the paperweight resides in the masses of the quarks from which the protons and neutrons are composed. But we’d be wrong again. Although it’s quite difficult to determine precisely the masses of the quarks, they are substantially smaller and lighter than the protons and neutrons that they comprise. We would estimate that the masses of the quarks, derived through their interaction with the Higgs field, account for only about 1% of the mass of a proton, for example.

But if 99% of the mass of a proton is not to be found in its constituent quarks, then where is it? The answer is that the rest of the proton’s mass resides in the energy of the massless gluons — the carriers of the strong nuclear force — that pass between the quarks and bind them together inside the proton.

What the standard model of particle physics tells us is quite bizarre. There appear to be ultimate building blocks which do have characteristic physical properties, but mass isn’t really one of them. Instead of mass we have interactions between elementary particles that would otherwise be massless and the Higgs field. These interactions slow the particles down, giving rise to inertia which we interpret as mass. As these elementary particles combine, the energy of the massless force particles passing between them builds, adding greatly to the impression of solidity and substance.

Jim Baggott is author of Higgs: The Invention and Discovery of the ‘God Particle’ and a freelance science writer. He was a lecturer in chemistry at the University of Reading but left to pursue a business career, where he first worked with Shell International Petroleum Company and then as an independent business consultant and trainer. His many books include Atomic: The First War of Physics (Icon, 2009), Beyond Measure: Modern Physics, Philosophy and the Meaning of Quantum Theory (OUP, 2003), A Beginner’s Guide to Reality (Penguin, 2005), and A Quantum Story: A History in 40 Moments (OUP, 2010). Read his previous blog posts.

On 4 July 2012, scientists at CERN’s Large Hadron Collider (LHC) facility in Geneva announced the discovery of a new elementary particle they believe is consistent with the long-sought Higgs boson, or ‘god particle’. Our understanding of the fundamental nature of matter — everything in our visible universe and everything we are — is about to take a giant leap forward. So, what is the Higgs boson and why is it so important? What role does it play in the structure of material substance? We’re celebrating the release of Higgs: The Invention and Discovery of the ‘God Particle’ with a series of posts by science writer Jim Baggott over the week to explain some of the mysteries of the Higgs. Read the previous posts: “What is the Higgs boson?”, “Why is the Higgs boson called the ‘god particle’?”, and “Is the particle recently discovered at CERN’s LHC the Higgs boson?”

Subscribe to the OUPblog via email or RSS.
Subscribe to only physics and chemistry articles on the OUPblog via email or RSS.
View more about this book on the  

0 Comments on How does the Higgs mechanism create mass? as of 9/6/2012 4:59:00 AM
Add a Comment
2. Why is the Higgs boson called the ‘god particle’?

We’re celebrating the release of Higgs: The Invention and Discovery of the ‘God Particle’ with a series of posts by science writer Jim Baggott over the next week to explain some of the mysteries of the Higgs boson. Read the previous post: “What is the Higgs boson?”

By Jim Baggott


The Higgs field was invented to explain how otherwise massless force particles could acquire mass, and was used by Weinberg and Salam to develop a theory of the combined ‘electro-weak’ force and predict the masses of the W and Z bosons. However, it soon became apparent that something very similar is responsible for the masses of the matter particles, too.

The way the Higgs field interacts with otherwise massless boson fields and the way it interacts with massless fermion fields is not the same (the latter is called a Yukawa interaction, named for Japanese physicist Hideki Yukawa). Nevertheless, the Higgs field clearly has a fundamentally important role to play. Without it, both matter and force particles would have no mass. Mass could not be constructed and nothing in our visible universe could be.

In his popular book The God Particle: If the Universe is the Answer, What is the Question?, first published in 1993, American physicist Leon Lederman (writing with Dick Teresi) explained why he’d chosen this title:

This boson is so central to the state of physics today, so crucial to our final understanding of the structure of matter, yet so elusive, that I have given it a nickname: the God Particle. Why God Particle? Two reasons. One, the publisher wouldn’t let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing. And two, there is a connection, of sorts, to another book, a much older one…

Lederman went on to quote a passage from the Book of Genesis.

This is a nickname that has stuck. Most physicists seem to dislike it, as they believe it exaggerates the importance of the Higgs boson. Higgs himself doesn’t seem to mind.

Jim Baggott is author of Higgs: The Invention and Discovery of the ‘God Particle’ and a freelance science writer. He was a lecturer in chemistry at the University of Reading but left to pursue a business career, where he first worked with Shell International Petroleum Company and then as an independent business consultant and trainer. His many books include Atomic: The First War of Physics (Icon, 2009), Beyond Measure: Modern Physics, Philosophy and the Meaning of Quantum Theory (OUP, 2003), A Beginner’s Guide to Reality (Penguin, 2005), and A Quantum Story: A History in 40 Moments (OUP, 2010). Read his previous blog post “Putting the Higgs particle in perspective.”

On 4 July 2012, scientists at CERN’s Large Hadron Collider (LHC) facility in Geneva announced the discovery of a new elementary particle they believe is consistent with the long-sought Higgs boson, or ‘god particle’. Our understanding of the fundamental nature of matter — everything in our visible universe and everything we are — is about to take a giant leap forward. So, what is the Higgs boson and why is it so important? What role does it play in the structure of material substance? We’re celebrating the release of Higgs: The Invention and Discovery of the ‘God Particle’ with a series of posts by science writer Jim Baggott over the next week to explain some of the mysteries of the Higgs. Read the previous post: “What is the Higgs boson?”

Subscribe to the OUPblog via email or RSS.
Subscribe to only physics and chemistry articles on the OUPblog via email or RSS.
View more about this book on the  

0 Comments on Why is the Higgs boson called the ‘god particle’? as of 9/4/2012 5:01:00 AM
Add a Comment