What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Posts

(tagged with 'polydactyly')

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: polydactyly, Most Recent at Top [Help]
Results 1 - 1 of 1
1. SciWhys: How do organisms develop?

Every month OUP editor and author Jonathan Crowe answers your science questions in the monthly SciWhys column. Got a burning question about science that you’d like answered? Just email it to us, and Jonathan will answer what he can.

Today: how do organisms develop?

By Jonathan Crowe


Each of our bodies is a mass of cells of varying types — from the brain cells that give us the power of thought, to the cardiac cells that form our heart and keep our blood circulating; from the lung cells that take in oxygen from the air around us, to the skin cells that envelop the organs and tissues that lie within. Regardless of their ultimate function, however, each of these cells has come from a single source — the fertilised egg. But how can the complexity and intricacy of a fully-functioning organism stem from such humble beginnings?

At heart, the growth of any organism relies on the repeated growth and division of cells. A cell grows, then splits into two. Each of those cells grows, then splits into two… and so the cycle continues. Before long, we’ve gone from having one cell to two, from two to four, and then to eight, to sixteen, etc. In fact, after ten ‘cycles’ we already have over 1000 cells. (We still have some way to go to generate the millions of cells that form an embryo, but you get the idea.)

Initially, the egg divides to from a hollow ball of cells. However, living creatures aren’t hollow. Instead, they have a clear inside and outside, with the inside usually comprising some kind of gut, which passes the length of the body, from mouth to anus. So how do we go from a hollow ball to something with a clear internal structure? Well, imagine holding a sponge ball between the fingers of two hands, and then pushing in the bottom of the ball with your thumbs. The bottom of the ball folds up and in, almost forming a ‘tunnel’ into the ball. Our hollow ball of cells does the same thing: the cells at the bottom of the hollow ball move up and inside to form a tunnel. These cells will go on to form the digestive tract, which (as our experience tells us) runs right through the inside of our bodies.

Shortly after, a strip of cells along the back of the ball of cells roll up to form a furrow. The cells forming this furrow will go on to form the nervous system, with the furrow itself becoming our spinal cord. And, again, this fits with our experience: our spinal cord does indeed run up and along our back.

The previous paragraphs reveal an important feature of the development of a living organism. It’s not just a question of having lots of cells: to have a fully-functioning organism, we need different cells to do different things – to have different functions. After all, our bodies would be quite useless (not to mention odd-looking) if we were composed entirely of lung cells. Instead, as a population of cells grows, it also clusters into groups with common functions, forming different tissues and different organs.

So how does a cell know what kind of cell it should become? At the simplest level, it depends on the cell’s location – its position in the embryo. But how can cells tell where they are? Do they have some kind of cellular GPS system? Actually, in a way they do. Just as the GPS feature of a mobile phone can tell us our location by picking up a signal from a satellite, cells can also receive signals from their surroundings, which vary according to their location. And, because cells at different positions in the embryo — top or bottom, front or back, left or right — receive different signals, they behave in different ways.

Our everyday experience tells us that our behaviour is modified by signals in the world around us – the most obvious example being the traffic lights that tell us when to stop or go when driving. In a cellular world,

0 Comments on SciWhys: How do organisms develop? as of 1/1/1900
Add a Comment