What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Posts

(tagged with 'neandertals')

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: neandertals, Most Recent at Top [Help]
Results 1 - 2 of 2
1. Meeting and mating with our ancient cousins

Two of the biggest scientific breakthroughs in paleoanthropology occurred in 2010. Not only had we determined a draft genome of an extinct Neandertal from bones that lay in the Earth for tens of thousands of years, but the genome from another heretofore unknown ancient human relative, dubbed the Denisovans, was also announced.

A one-hundred-year-old conundrum was finally answered: did we mate with Neandertals? It was now undeniable that modern humans, with all our modern features – our rounded craniums, prominent chins, gracile faces tucked beneath an enlarged forehead, and long, slender skeletons – had met and mated with both of these extinct ancient human-like beings. After comparison with the human genome, 2-4% of the genomes of all peoples outside Africa had been directly inherited from Neandertal ancestors. And, DNA from the Denisovans (named after the cave in southern Siberia where their bones were discovered) makes up 3% to 6% of the genomes of many peoples living in South East Asia (Philippines, Melanesians, Australian Aborigines).

We now believe that it is in the Levant, regions just east of the Mediterranean, where humans met and mated with Neandertals. Remains of Neandertals are well known from this region. When modern humans ventured out of Africa into the Levant approximately 50,000 years ago, they mated with Neandertals. When they later spread into South East Asia they mated with Denisovans, although mating probably occurred in other regions of Asia as well. We now have evidence suggesting the ancient Denisovans occupied a very large geographic distribution extending from Southern Siberia all the way to the South East Asian tropics. It is tantalizing that, other than their distinctive genomes and their somewhat robust-looking molars, we know close to nothing about what they looked like.

Neanderthal skull discovered in Gibraltar in 1848. Image credit: Creative Commons via AquilaGib.
Neanderthal skull discovered in Gibraltar in 1848. Photo by AquilaGib. CC BY-SA 3.0 via Wikimedia Commons.

With these discoveries, the notion that modern humans would hardly have interbred with such dim-witted, brutish, and bent-kneed Neandertals – a reputation that had long dogged Neandertals since French Paleontologist Marcellin Boule studied them – was now clearly out of the question. Indeed, more recent research into the skeleton and the cultural artifacts of Neandertals has demonstrated their sophisticated material cultures (stone tools, body ornament, and symbolic culture) and that their skeletons, rather than being “primitive,” were adapted for the cold and for rugged daily physical activities. Furthermore, the almost paradigmatically-held view of a strict replacement of ancient peoples in Eurasia by colonizing modern humans is now laid to rest. This view, popularized in the 1980s and 1990s, rested on comparisons between the minute mitochondrial genomes (much less than 1% of our full genomes) of humans and Neandertals. Full genomes, as you can see, tell us a fuller and more fascinating story.

These breakthroughs open a window of fresh air into the field of anthropology after decades of speculation. They are simultaneous with advancements in detecting the genetic bases of common chronic human diseases like hypertension, obesity, and diabetes. Yet even these diseases have been shaped by our evolutionary past. Genomes tell us that our species has undergone contractions in population size during the evolutionary past, which reduced the effectiveness of natural evolutionary constraints, and allowed damaging mutations to slip through the cracks to take root in our genome. This is a new view of disease informed by evolution as well as genomes.

We are also making base-by-base comparisons of our genome with those of chimpanzees, gorillas, orangutans, as well as genomes of other primates, allowing us to start to look for the genomic bases of our unique features – our large and complex brains, our complex cognition, and our use of spoken language. At the same time, we are learning the degree to which there is a genetic continuum between us and our primate relatives. Darwin presciently wrote in The Descent of Man and Selection in Relation to Sex that “the difference in mind between man and the higher animals, great as it is, certainly is one of degree and not of kind.” Today, we are realizing Darwin’s dream.

We are also uncovering details about how different human populations adapted to hot and cold climates, high altitudes, different diets, and to the various pathogens modern humans encountered as we colonized different regions of the world. A large project is already well-underway to collect thousands of genomes of modern peoples from different regions of the world. Comparing these genomes allows the search for ancient footprints left by positive selection (the type of natural selection that shapes our adaptations). Surprisingly, the different pathogens we encountered as we left Africa and spread into different environments appears to have made some of the largest footprints on our genome.

The genomic highway has an unchecked speed limit; we are experiencing a unique problem where data is pouring in faster than it can be fully analyzed. Each new issue of our scientific journals is ripe with new, exciting discoveries unlocking intriguing secrets of our ancestry.

The post Meeting and mating with our ancient cousins appeared first on OUPblog.

0 Comments on Meeting and mating with our ancient cousins as of 11/10/2014 9:40:00 AM
Add a Comment
2. How to communicate like a Neandertal…

By Thomas Wynn and Frederick L. Coolidge


Neandertal communication must have been different from modern language. To repeat a point made often in this book, Neandertals were not a stage of evolution that preceded modern humans. They were a distinct population that had a separate evolutionary history for several hundred thousand years, during which time they evolved a number of derived characteristics not shared with Homo sapiens sapiens. At the same time, a continent away, our ancestors were evolving as well. Undoubtedly both Neandertals and Homo sapiens sapiens continued to share many characteristics that each retained from their common ancestor, including characteristics of communication. To put it another way, the only features that we can confidently assign to both Neandertals and Homo sapiens sapiens are features inherited from Homo heidelbergensis. If Homo heidelbergensis communicated via modern style words and modern syntax, then we can safely attribute these to Neandertals as well. Most scholars find this highly unlikely, largely because Homo heidelbergensis brains were slightly smaller than ours and smaller than Neandertals’, but also because the archaeological record of Homo heidelbergensis is much less ‘modern’ than either ours or Neandertals’. Thus, we must conclude that Neandertal communication had evolved along its own path, and that this path may have been quite different from the one followed by our ancestors. The result must have been a difference far greater than the difference between Chinese and English, or indeed between any pair of human languages. Specifying just how Neandertal communication differed from ours may be impossible, at least at our current level of understanding. But we can attempt to set out general features of Neandertal communication based on what we know from the comparative, fossil, and archaeological records.

As we have tried to show in previous chapters, the paleoanthropological record of Neandertals suggests that they relied heavily on two styles of thinking – expert cognition and embodied social cognition. These, at least, are the cognitive styles that best encompass what we know of Neandertal daily life. And they do carry implications for communication. Neandertals were expert stone knappers, relied on detailed knowledge of landscape, and a large body of hunting tactics. It is possible that all of this knowledge existed as alinguistic motor procedures learned through observation, failure, and repetition. We just think it unlikely. If an experienced knapper could focus the attention of a novice using words it would be easier to learn Levallois. Even more useful would be labels for features of the landscape, and perhaps even routes, enabling Neandertal hunters to refer to any location in their territories. Such labels would almost have been required if widely dispersed foraging groups needed to congregate at certain places (e.g., La Cotte). And most critical of all, in a natural selection sense, would be an ability to indicate a hunting tactic prior to execution. These labels must have been words of some kind. We suspect that Neandertal words were always embedded in a rich social and environmental context that included gesturing (e.g., pointing) and emotionally laden tones of voice, much as most human vocal communication is similarly embedded, a feature of communication probably inherited from Homo heidelbergensis.

At the risk of crawling even further out on a limb than the two of us usually go, we make the following suggestions about Neandertal communication:

1)  Neandertals had speech. Their expanded Broca’s area in the brain, and their possession of a human FOXP2 gene both suggest this. Neandertal speech was probably based on a large (perhaps huge) vocabulary – words for places, routes, techniques, individuals, and emotions. We have shown that Neandertal expertise was large

0 Comments on How to communicate like a Neandertal… as of 1/1/1900
Add a Comment