What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
<<June 2024>>
SuMoTuWeThFrSa
      01
02030405060708
09101112131415
16171819202122
23242526272829
30      
new posts in all blogs
Viewing: Blog Posts Tagged with: newton’s, Most Recent at Top [Help]
Results 1 - 2 of 2
1. True or false? Ten myths about Isaac Newton

By Sarah Dry


Nearly three hundred years since his death, Isaac Newton is as much a myth as a man. The mythical Newton abounds in contradictions; he is a semi-divine genius and a mad alchemist, a somber and solitary thinker and a passionate religious heretic. Myths usually have an element of truth to them but how many Newtonian varieties are true? Here are ten of the most common, debunked or confirmed by the evidence of his own private papers, kept hidden for centuries and now freely available online.

10. Newton was a heretic who had to keep his religious beliefs secret.

True. While Newton regularly attended chapel, he abstained from taking holy orders at Trinity College. No official excuse survives, but numerous theological treatises he left make perfectly clear why he refused to become an ordained clergyman, as College fellows were normally obliged to do. Newton believed that the doctrine of the Trinity, in which the Father, the Son and the Holy Ghost were given equal status, was the result of centuries of corruption of the original Christian message and therefore false. Trinity College’s most famous fellow was, in fact, an anti-Trinitarian.

9. Newton never laughed.

False, but only just. There are only two specific instances that we know of when the great man laughed. One was when a friend to whom he had lent a volume of Euclid’s Elements asked what the point of it was, ‘upon which Sir Isaac was very merry.’ (The point being that if you have to ask what the point of Euclid is, you have already missed it.) So far, so moderately funny. The second time Newton laughed was during a conversation about his theory that comets inevitably crash into the stars around which they orbit. Newton noted that this applied not just to other stars but to the Sun as well and laughed while remarking to his interlocutor John Conduitt ‘that concerns us more.’

8. Newton was an alchemist.

True. Alchemical manuscripts make up roughly one tenth of the ten million words of private writing that Newton left on his death. This archive contains very few original treatises by Newton himself, but what does remain tells us in minute detail how he assessed the credibility of mysterious authors and their work. Most are copies of other people’s writings, along with recipes, a long alchemical index and laboratory notebooks. This material puzzled and disappointed many who encountered it, such as biographer David Brewster, who lamented ‘how a mind of such power, and so nobly occupied with the abstractions of geometry, and the study of the material world, could stoop to be even the copyist of the most contemptible alchemical work, the obvious production of a fool and a knave.’ While Brewster tried to sweep Newton’s alchemy under the rug, John Maynard Keynes made a splash when he wrote provocatively that Newton was the ‘last of the magicians’ rather than the ‘first king of reason.’

7. Newton believed that life on earth (and most likely on other planets in the universe) was sustained by dust and other vital particles from the tails of comets.

True. In Book 3 of the Principia, Newton wrote extensively how the rarefied vapour in comet’s tails was eventually drawn to earth by gravity, where it was required for the ‘conservation of the sea, and fluids of the planets’ and was most likely responsible for the ‘spirit’ which makes up the ‘most subtle and useful part of our air, and so much required to sustain the life of all things with us.’

6. Newton was a self-taught genius who made his pivotal discoveries in mathematics, physics and optics alone in his childhood home of Woolsthorpe while waiting out the plague years of 1665-7.

False, though this is a tricky one. One of the main treasures that scholars have sought in Newton’s papers is evidence for his scientific genius and for the method he used to make his discoveries. It is true that Newton’s intellectual achievement dwarfed that of his contemporaries. It is also true that as a 23 year-old, Newton made stunning progress on the calculus, and on his theories of gravity and light while on a plague-induced hiatus from his undergraduate studies at Trinity College. Evidence for these discoveries exists in notebooks which he saved for the rest of his life. However, notebooks kept at roughly the same time, both during his student days and his so called annus mirabilis, also demonstrate that Newton read and took careful notes on the work of leading mathematicians and natural philosophers, and that many of his signature discoveries owe much to them.

GodfreyKneller-IsaacNewton-1689

5. Newton found secret numerological codes in the Bible.

True. Like his fellow analysts of scripture, Newton believed there were important meanings attached to the numbers found there. In one theological treatise, Newton argues that the Pope is the anti-Christ based in part on the appearance in Scripture of the number of the name of the beast, 666. In another, he expounds on the meaning of the number 7, which figures prominently in the numbers of trumpets, vials and thunders found in Revelation.

4. Newton had terrible handwriting, like all geniuses.

False. Newton’s handwriting is usually clear and easy to read. It did change somewhat throughout his life. His youthful handwriting is slightly more angular, while in his old age, he wrote in a more open and rounded hand. More challenging than deciphering his handwriting is making sense of Newton’s heavily worked-over drafts, which are crowded with deletions and additions. He also left plenty of very neat drafts, especially of his work on church history and doctrine, which some considered to be suspiciously clean, evidence, said his 19th century cataloguers, of Newton’s having fallen in love with his own hand-writing.

3. Newton believed the earth was created in seven days.

True. Newton believed that the Earth was created in seven days, but he assumed that the duration of one revolution of the planet at the beginning of time was much slower than it is today.

2. Newton discovered universal gravitation after seeing an apple fall from a tree.

False, though Newton himself was partly responsible for this myth. Seeking to shore up his legacy at the end of his life, Newton told several people, including Voltaire and his friend William Stukeley, the story of how he had observed an apple falling from a tree while waiting out the plague in Woolsthorpe between 1665-7. (He never said it hit him on the head.) At that time Newton was struck by two key ideas—that apples fall straight to the center of the earth with no deviation and that the attractive power of the earth extends beyond the upper atmosphere. As important as they are, these insights were not sufficient to get Newton to universal gravitation. That final, stunning leap came some twenty years later, in 1685, after Edmund Halley asked Newton if he could calculate the forces responsible for an elliptical planetary orbit.

1. Newton was a virgin.

Almost certainly true. One bit of evidence comes via Voltaire, who heard it from Newton’s physician Richard Mead and wrote it up in his Letters on England, noting that unlike Descartes, Newton was ‘never sensible to any passion, was not subject to the common frailties of mankind, nor ever had any commerce with women.’ More substantively, there is Newton’s lifelong status as a self-proclaimed godly bachelor who berated his friend Locke for trying to ‘embroil’ him with women and who wrote passionately about how other godly men struggled to tame their lust.

Sarah Dry is a writer, independent scholar, and a former post-doctoral fellow at the London School of Economics. She is the author of The Newton Papers: The Strange and True Odyssey of Isaac Newton’s Manuscripts. She blogs at sarahdry.wordpress.com and tweets at @SarahDry1.

Subscribe to the OUPblog via email or RSS.
Subscribe to only physics and chemistry articles on the OUPblog via email or RSS.
Image credit: Portrait of Isaac Newton by Sir Godfrey Kneller. Public domain via Wikimedia Commons.

The post True or false? Ten myths about Isaac Newton appeared first on OUPblog.

0 Comments on True or false? Ten myths about Isaac Newton as of 1/1/1900
Add a Comment
2. Celebrating Newton, 325 years after Principia

By Robyn Arianrhod


This year, 2012, marks the 325th anniversary of the first publication of the legendary Principia (Mathematical Principles of Natural Philosophy), the 500-page book in which Sir Isaac Newton presented the world with his theory of gravity. It was the first comprehensive scientific theory in history, and it’s withstood the test of time over the past three centuries.

Unfortunately, this superb legacy is often overshadowed, not just by Einstein’s achievement but also by Newton’s own secret obsession with Biblical prophecies and alchemy. Given these preoccupations, it’s reasonable to wonder if he was quite the modern scientific guru his legend suggests, but personally I’m all for celebrating him as one of the greatest geniuses ever. Although his private obsessions were excessive even for the seventeenth century, he was well aware that in eschewing metaphysical, alchemical, and mystical speculation in his Principia, he was creating a new way of thinking about the fundamental principles underlying the natural world. To paraphrase Newton himself, he changed the emphasis from metaphysics and mechanism to experiment and mathematical analogy. His method has proved astonishingly fruitful, but initially it was quite controversial.

He had developed his theory of gravity to explain the cause of the mysterious motion of the planets through the sky: in a nutshell, he derived a formula for the force needed to keep a planet moving in its observed elliptical orbit, and he connected this force with everyday gravity through the experimentally derived mathematics of falling motion. Ironically (in hindsight), some of his greatest peers, like Leibniz and Huygens, dismissed the theory of gravity as “mystical” because it was “too mathematical.” As far as they were concerned, the law of gravity may have been brilliant, but it didn’t explain how an invisible gravitational force could reach all the way from the sun to the earth without any apparent material mechanism. Consequently, they favoured the mainstream Cartesian “theory”, which held that the universe was filled with an invisible substance called ether, whose material nature was completely unknown, but which somehow formed into great swirling whirlpools that physically dragged the planets in their orbits.

The only evidence for this vortex “theory” was the physical fact of planetary motion, but this fact alone could lead to any number of causal hypotheses. By contrast, Newton explained the mystery of planetary motion in terms of a known physical phenomenon, gravity; he didn’t need to postulate the existence of fanciful ethereal whirlpools. As for the question of how gravity itself worked, Newton recognized this was beyond his scope — a challenge for posterity — but he knew that for the task at hand (explaining why the planets move) “it is enough that gravity really exists and acts according to the laws that we have set forth and is sufficient to explain all the motions of the heavenly bodies…”

What’s more, he found a way of testing his theory by using his formula for gravitational force to make quantitative predictions. For instance, he realized that comets were not random, unpredictable phenomena (which the superstitious had feared as fiery warnings from God), but small celestial bodies following well-defined orbits like the planets. His friend Halley famously used the theory of gravity to predict the date of return of the comet now named after him. As it turned out, Halley’s prediction was fairly good, although Clairaut — working half a century later but just before the predicted return of Halley’s comet — used more sophisticated mathematics to apply Newton’s laws to make an even more accurate prediction.

Clairaut’s calculations illustrate the fact that despite the phenomenal depth and breadth of Principia, it took a further century of effort by scores of mathematicians and physicists to build on Newton’s work and to create modern “Newtonian” physics in the form we know it today. But Newton had created the blueprint for this science, and its novelty can be seen from the fact that some of his most capable peers missed the point. After all, he had begun the radical process of transforming “natural philosophy” into theoretical physics — a transformation from traditional qualitative philosophical speculation about possible causes of physical phenomena, to a quantitative study of experimentally observed physical effects. (From this experimental study, mathematical propositions are deduced and then made general by induction, as he explained in Principia.)

Even the secular nature of Newton’s work was controversial (and under apparent pressure from critics, he did add a brief mention of God in an appendix to later editions of Principia). Although Leibniz was a brilliant philosopher (and he was also the co-inventor, with Newton, of calculus), one of his stated reasons for believing in the ether rather than the Newtonian vacuum was that God would show his omnipotence by creating something, like the ether, rather than leaving vast amounts of nothing. (At the quantum level, perhaps his conclusion, if not his reasoning, was right.) He also invoked God to reject Newton’s inspired (and correct) argument that gravitational interactions between the various planets themselves would eventually cause noticeable distortions in their orbits around the sun; Leibniz claimed God would have had the foresight to give the planets perfect, unchanging perpetual motion. But he was on much firmer ground when he questioned Newton’s (reluctant) assumption of absolute rather than relative motion, although it would take Einstein to come up with a relativistic theory of gravity.

Einstein’s theory is even more accurate than Newton’s, especially on a cosmic scale, but within its own terms — that is, describing the workings of our solar system (including, nowadays, the motion of our own satellites) — Newton’s law of gravity is accurate to within one part in ten million. As for his method of making scientific theories, it was so profound that it underlies all the theoretical physics that has followed over the past three centuries. It’s amazing: one of the most religious, most mystical men of his age put his personal beliefs aside and created the quintessential blueprint for our modern way of doing science in the most objective, detached way possible. Einstein agreed; he wrote a moving tribute in the London Times in 1919, shortly after astronomers had provided the first experimental confirmation of his theory of general relativity:

“Let no-one suppose, however, that the mighty work of Newton can really be superseded by [relativity] or any other theory. His great and lucid ideas will retain their unique significance for all time as the foundation of our modern conceptual structure in the sphere of [theoretical physics].”

Robyn Arianrhod is an Honorary Research Associate in the School of Mathematical Sciences at Monash University. She is the author of Seduced by Logic: Émilie Du Châtelet, Mary Somerville and the Newtonian Revolution and Einstein’s Heroes. Read her previous blog posts.

Subscribe to the OUPblog via email or RSS.
Subscribe to only science and medicine articles on the OUPblog via email or RSS.

The post Celebrating Newton, 325 years after Principia appeared first on OUPblog.

0 Comments on Celebrating Newton, 325 years after Principia as of 12/26/2012 8:15:00 AM
Add a Comment