What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: #ACSsanfran, Most Recent at Top [Help]
Results 1 - 3 of 3
1. Nicholson’s wrong theories and the advancement of chemistry

By Eric Scerri


The past couple of years have seen the celebration of a number of key developments in the history of physics. In 1913 Niels Bohr, perhaps the second most famous physicist of the 20th century after Einstein, published is iconic theory of the atom. Its main ingredient, which has propelled it into the scientific hall of fame, was it’s incorporation of the notion of the quantum of energy. The now commonplace view that electrons are in shells around the nucleus is a direct outcome of the quantization of their energy.

Between 1913 and 1914 the little known English physicist, Henry Moseley, discovered that the use of increasing atomic weights was not the best way to order the elements in the chemist’s periodic table. Instead, Moseley proposed using a whole number sequence to denote a property that he called the atomic number of an element. This change had the effect of removing the few remaining anomalies in the way that the elements are arranged in this icon of science that is found on the walls of lecture halls and laboratories all over the world. In recent years the periodic table has even become a cultural icon to be appropriated by artists, designers and advertisers of every persuasion.

But another scientist who was publishing articles at about the same time as Bohr and Moseley has been almost completely forgotten by all but a few historians of physics. He is the English mathematical physicist John Nicholson, who was in fact the first to suggest that the momentum of electrons in an atom is quantized. Bohr openly acknowledges this point in all his early papers.

Nicholson hypothesized the existence of what he called proto-elements that he believed existed in inter-stellar space and which gave rise to our familiar terrestrial chemical elements. He gave them exotic names like nebulium and coronium and using this idea he was able to explain many unassigned lines in the spectra of the solar corona and the major stellar nebulas such as the famous Crab nebula in the constellation of Orion. He also succeeded in predicting some hitherto unknown lines in each of these astronomical bodies.

The really odd thing is that Nicholson was completely wrong, or at least that’s how his ideas are usually regarded. How it is that supposedly ‘wrong’ theories can produce such advances in science, even if only temporarily?

Image Credit: Bio Lab. Photo by Amy. CC BY 2.0 via Amy Loves Yah Flickr.

Image Credit: Bio Lab. Photo by Amy. CC BY 2.0 via Amy Loves Yah Flickr.

Science progresses as a unified whole, not stopping to care about which scientist is successful or not, while being only concerned with overall progress. The attribution of priority and scientific awards, from a global perspective, is a kind of charade which is intended to reward scientists for competing with each other. On this view no scientific development can be regarded as being right or wrong. I like to draw an analogy with the evolution of species or organisms. Developments that occur in living organisms can never be said to be right or wrong. Those that are advantageous to the species are perpetuated while those that are not simply die away. So it is with scientific developments. Nicholson’s belief in proto-elements may not have been productive but his notion of quantization in atoms was tremendously useful and the baton was passed on to Bohr and all the quantum physicists who came later.

Instead of viewing the development of science through the actions of individuals and scientific heroes, a more holistic view is better to discern the whole process — including the work of lesser-known intermediate figures, such as Nicholson. The Dutch economist Anton den Broek first made the proposal that elements should be characterized by an ordinal number before Moseley had even begun doing physics. This is not a disputed point since Moseley begins one of his key papers by stating that he began his research in order to verify the van den Broek hypothesis on atomic number.

Another intermediate figure in the history of physics was Edmund Stoner who took a decisive step forward in assigning quantum numbers to each of the electrons in an atom while as a graduate student at Cambridge. In all there are four such quantum numbers which are used to specify precisely how the electrons are arranged first in shells, then sub-shells and finally orbitals in any atom. Stoner was responsible for applying the third quantum number. It was after reading Stoner’s article that the much more famous Wolfgang Pauli was able to suggest a fourth quantum number which later acquired the name of electron spin to describe a further degree of freedom for every electron in an atom.

Eric Scerri is a full-time chemistry lecturer at UCLA. Eric Scerri is a leading philosopher of science specializing in the history and philosophy of the periodic table. He is also the founder and editor in chief of the international journal Foundations of Chemistry and has been a full-time lecturer at UCLA for the past fifteen years where he regularly teaches classes of 350 chemistry students as well as classes in history and philosophy of science. He is the author of A Tale of Seven Elements, The Periodic Table: Its Story and Its Significance, and The Periodic Table: A Very Short Introduction.

Chemistry Giveaway! In time for the 2014 American Chemical Society fall meeting and in honor of the publication of The Oxford Handbook of Food Fermentations, edited by Charles W. Bamforth and Robert E. Ward, Oxford University Press is running a paired giveaway with this new handbook and Charles Bamforth’s other must-read book, the third edition of Beer. The sweepstakes ends on Thursday, August 14th at 5:30 p.m. EST.

Subscribe to the OUPblog via email or RSS.
Subscribe to only physics and chemistry articles on the OUPblog via email or RSS.

The post Nicholson’s wrong theories and the advancement of chemistry appeared first on OUPblog.

0 Comments on Nicholson’s wrong theories and the advancement of chemistry as of 8/10/2014 6:26:00 AM
Add a Comment
2. The health benefits of cheese

By Michael H. Tunick


Lipids (fats and oils) have historically been thought to elevate weight and blood cholesterol and have therefore been considered to have a negative influence on the body. Foods such as full-fat milk and cheese have been avoided by many consumers for this reason. This attitude has been changing in recent years. Some authors are now claiming that consumption of unnecessary carbohydrates rather than fat is responsible for the epidemics of obesity and type 2 diabetes mellitus (T2DM). Most people who do consume milk, cheese, and yogurt know that the calcium helps with bones and teeth, but studies have shown that consumption of cheese and other dairy products appears to be beneficial in many other ways. Remember that cheese is a concentrated form of milk. Milk is 87% water and when it is processed into cheese, the nutrients are increased by a factor of ten. The positive attributes of milk are even stronger in cheese. Here are some examples involving protein:

Some bioactive peptides in casein (the primary protein in cheese) inhibit angiotensin-converting enzyme, which has been implicated in hypertension. Large studies have shown that dairy intake reduces blood pressure.

Cheese helps prevent tooth decay through a combination of bacterial inhibition and remineralization. Further, Lactoferrin, a minor milk protein found in cheese, has anticancer properties. It appears to keep cancer cells from proliferating.

Vitamins and minerals in cheese may not get enough credit. A meta-analysis of 16 studies showed that consumption of 200 g of cheese and other dairy products per day resulted in a 6% reduction of risk of T2DM, with a significant association between reduction of incidence of T2DM and intake of cheese, yogurt, and low-fat dairy products. Much of this may be due to vitamin K2, which is produced by bacteria in fermented dairy products.

Metabolic syndrome increases the risk for T2DM and heart disease, but research showed that the incidence of this syndrome decreased as dairy food consumption increased, a result that was associated with calcium intake.

Image Credit: State Library of South Australia via Creative Commons.

There is evidence that lipids in cheese are not unhealthy after all. Recent research has shown no connection between the intake of milk fat and the risk of cardiovascular disease, coronary heart disease, or stroke. A meta-analysis of 76 studies concluded that the evidence does not clearly support guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.

Participants in a study who ate cheese and other dairy products at least once per day scored significantly higher in several tests of cognitive function compared with those who rarely or never consumed dairy food. These results appear to be due to a combination of factors.

Seemingly, the opposite of what people believe about cheese turns out to be the truth. Studies involving thousands of people over a period of years revealed that a high intake of dairy fat was associated with a lower risk of developing central obesity and a low dairy fat intake was associated with a higher risk of central obesity. Higher consumption of cheese has been associated with higher HDL (“good cholesterol”) and lower LDL (“bad cholesterol”), total cholesterol, and triglycerides.

All-cause mortality showed a reduction associated with dairy food intake in a meta-analysis of five studies in England and Wales covering 509,000 deaths in 2008. The authors concluded that there was a large mismatch between evidence from long-term studies and perceptions of harm from dairy foods.

Yes, some people are allergic to protein in cheese and others are vegetarians who don’t touch dairy products on principle. Many people can’t digest lactose (milk sugar) very well, but aged cheese contains little of it and lactose-free cheese has been on the market for years. But cheese is quite healthy for most consumers. Moderation in food consumption is always the key: as long as you eat cheese in reasonable amounts, you ought to have no ill effects while reaping the benefits.

Michael Tunick is a research chemist with the Dairy and Functional Foods Research Unit of the U.S. Department of Agriculture’s Agricultural Research Service. He is the author of The Science of Cheese. You can find out more things you never knew about cheese.

Chemistry Book Giveaway! In time for the 2014 American Chemical Society fall meeting and in honor of the publication of The Oxford Handbook of Food Fermentations, edited by Charles W. Bamforth and Robert E. Ward, Oxford University Press is running a paired giveaway with this new handbook and Charles Bamforth’s other must-read book, the third edition of Beer. The sweepstakes ends on Thursday, August 14th at 5:30 p.m. EST.

Subscribe to the OUPblog via email or RSS.
Subscribe to only physics and chemistry articles on the OUPblog via email or RSS.

Image credit: Hand milking a cow, by the State Library of Australia. CC-BY-2.0 via Wikimedia Commons.

The post The health benefits of cheese appeared first on OUPblog.

0 Comments on The health benefits of cheese as of 8/10/2014 6:26:00 AM
Add a Comment
3. Extending patent protections to discover the next life-saving drugs

By Jie Jack Li


At the end of last year, Eli Lilly’s mega-blockbuster antidepressant Cymbalta went off patent. Cymbalta’s generic version, known as duloxetine, rushed in to the market and drove down the price, making it more affordable.

Great news for everyone, right? Well, not quite.

Indeed, generic competition is a great boon to the payer and the patient. On the other hand, the makers of the brand medicine can lose about 70% of the revenue. Without sustained investment in drug discovery and development, there will be fewer and fewer lifesaving drugs, not really a scenario the patient wants. Cymbalta had sales of $6.3 billion last year. Combined with Zyprexa, which lost patent protection in 2011, Lilly lost $10 billion in annual sales from these two drugs alone. The company responded by freezing salaries and slashing 30% of its sales force.

Image Credit: Chris Potter via Creative Commons

Prescription Prices. Photo by Chris Potter, StockMonkeys.com. CC BY 2.0 via Flickr.

Lilly is not alone in this quandary. In 2011, Pfizer lost its $13 billion drug Lipitor, the best-selling drug ever, which made “merely” $2.3 billion in 2013. Of course Pfizer became the number one drug company by swallowing Warner-Lambert, Pharmacia, and Wyeth, shutting down many research sites that were synonyms to the American pharmaceutical industry, and shedding tens of thousands of jobs. Meanwhile, Merck lost its US marketing exclusivity of its asthma drug Singulair (montekulast) in 2012 and saw a 97% decline in US sales in 4Q12 compared with 4Q11. Merck announced in October last year that it would cut 8,500 jobs on top of the 7,500 layoffs planned earlier. Bristol-Myers Squibb’s Plavix (clopidogrel)’s peak sales were $7 billion, ranking the second best-selling drug ever. After Plavix lost its patent protection in May 2012, the sales were $258 million last year. Meanwhile BMS has shrunk from 43,000 to 28,000 employees in the last decade.

Generics competition is not the only woe that big Pharma are facing. Outsourcing Pharma jobs to China and India, M&A, and economic downturn rendered thousands of highly paid and highly educated scientists to scramble for alternative employments, many outside the drug industry. With numerous site closures, outsourcing cost reductions, and downsizing, some 150,000 in Pharma lost their jobs from 2009 through 2012, according to consulting firm Challenger, Gray & Christmas. Such a brain drain makes us the lost generation of American drug discovery scientists, including this author. In contrast, Japanese drug companies refused to improve the bottom line through mass layoffs of R&D staff, a decision will likely benefit productivity in the long run.

What can we do to ensure the health of the drug industry and sustain the output of lifesaving medicines? Realizing that there is no single prescription for this issue, one could certainly begin talking about patent reform.

Current patent system is antiquated as far as innovative drugs are concerned. Decades ago, 17 years of patent life was somewhat adequate for the drug companies to recoup their investment in R&D because the life cycle from discovery to marketing at the time was relatively short and the cost was lower. Today’s drug discovery and development is a completely new ballgame. First of all, the low-hanging fruits have been harvested, and it is becoming increasingly challenging to create novel drugs, especially the ones that are “first-in-class” medicines. Second of all, the clinical trials are longer and use more patients, increasing the cost and eating into patent life. The latest statistics say that it takes $1.3 billion to take a drug from idea to market after taking the failed drugs’ costs into account. This is the major reason why prescription drugs are so expensive because pharmaceutical companies need to recoup their investment so that they will have money to invest in discovering future new life-saving medicines. Therefore, today’s patent life of 20 years (the patent life was extended from 17 years to 20 since 1995) is insufficient for medicines, especially the ones that are “first-in-class.”

Therefore, patent life for innovative medicines should be extended because the risk is the highest, as is the failure rate. Since the life cycle from idea to regulatory approval is getting longer and longer, it would make more sense if the patent clock started ticking after the drug is approved while exclusivity is still provided after the filing

The current compensation system for the discovery of lifesaving drugs is in a dire need of reform as well. Top executives are receiving millions in compensation even as the company is laying off thousands of employees to reduce cost. Recently, Glaxo Smith Kline announced that the company will pay significant bonuses to scientists who discover drugs. This is a good start.

The phenomenon of blockbuster drugs was a harbinger of the golden age of the pharmaceutical industry. Patients were happy because taking medicines was vastly cheaper than staying in the hospital. Shareholders were happy because huge profit was made and stocks for big Pharma used to be considered a sure bet.

Perhaps most importantly, the drug industry expanded and employed more and more scientists to its workforce. That employment in turn encouraged academia to train more students in science. America’s Science, Technology, Engineering, and Mathematics education was and still is the envy of the rest of the world. Maintaining that important reputation depends on a thriving pharmaceutical industry to provide jobs for our leading scientists and researchers. In turn they will reward us by discovering the next life-saving drugs.

Dr. Jie Jack Li is an associate professor at the University of San Francisco. He is the author of over 20 books on history of drug discovery, medicinal chemistry, and organic chemistry. His latest book being Blockbuster Drugs, The Rise and Decline of the Pharmaceutical Industry.

Chemistry Giveaway! In time for the 2014 American Chemical Society fall meeting and in honor of the publication of The Oxford Handbook of Food Fermentations, edited by Charles W. Bamforth and Robert E. Ward, Oxford University Press is running a paired giveaway with this new handbook and Charles Bamforth’s other must-read book, the third edition of Beer. The sweepstakes ends on Thursday, 14 August 2014 at 5:30 p.m. EST.

Subscribe to the OUPblog via email or RSS.
Subscribe to only physics and chemistry articles on the OUPblog via email or RSS.

The post Extending patent protections to discover the next life-saving drugs appeared first on OUPblog.

0 Comments on Extending patent protections to discover the next life-saving drugs as of 8/9/2014 7:06:00 AM
Add a Comment