What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: medical microbiology, Most Recent at Top [Help]
Results 1 - 2 of 2
1. Why are sex differences frequently overlooked in biomedical research?

By Katie L. Flanagan


Despite the huge body of evidence that males and females have very different immune systems and responses, few biomedical studies consider sex in their analyses. Sex refers to the intrinsic characteristics that distinguish males from females, whereas gender refers to the socially determined behaviour, roles, or activities that males and females adopt. Male and female immune systems are not the same leading to clear sexual dimorphism in response to infections and vaccination.

In 2010, Nature featured a series of articles aimed at raising awareness of the inherent sex bias in modern day biomedical research and, yet, little has changed since that time. They suggested journals and funders should insist on studies being conducted in both sexes, or that authors should state the sex of animals used in their studies, but, unfortunately, this was not widely adopted.

Even before birth, intrauterine differences begin to differentially shape male and female immune systems. The male intrauterine environment is more inflammatory than that of females, male fetuses produce more androgens and have higher IgE levels, all of which lead to sexual dimorphism before birth. Furthermore, male fetuses have been shown to undergo more epigenetic changes than females with decreased methylation of many immune response genes, probably due to physiological differences.

The X chromosome contains numerous immune response genes, while the Y chromosome encodes for a number of inflammatory pathway genes that can only be expressed in males. Females have two X chromosomes, one of which is inactivated, usually leading to expression of the wild type gene. X inactivation is incomplete or variable, which is thought to contribute to greater inflammatory responses among females. The immunological X and Y chromosome effects will begin to manifest in the womb leading to the sex differences in immunity from birth, which continue throughout life.

MicroRNAs (miRNAs) regulate physiological processes, including cell growth, differentiation, metabolism and apoptosis. Males and females differ in their miRNA expression, even in embryonic stem cells, which is likely to contribute to sex differences in the prevalence, pathogenesis and outcome of infections and vaccination.

man woman

Females are born with higher oestriol concentrations than males, while males have more testosterone. Shortly after birth, male infants undergo a ‘mini-puberty’, characterised by a testosterone surge, which peaks at about 3 months of age, while the female effect is variable. Once puberty begins, the ovarian hormones such as oestrogen dominate in females, while testicular-derived androgens dominate in males. Many immune cells express sex hormone receptors, allowing the sex hormones to influence immunity. Very broadly, oestrogens are Th2 biasing and pro-inflammatory, whereas testosterone is Th1 skewing and immunosuppressive. Thus, sex steroids undoubtedly play a major role in sexual dimorphism in immunity throughout life.

Sex differences have been described for almost every commercially available vaccine in use. Females have higher antibody responses to certain vaccines, such as measles, hepatitis B, influenza and tetanus vaccines, while males have better antibody responses to yellow fever, pneumococcal polysaccharide, and meningococcal A and C vaccines. However, the data are conflicting with some studies showing sex effects, whereas other studies show none. Post-vaccination clinical attack rates also vary by sex with females suffering less influenza and males experiencing less pneumococcal disease after vaccination. Females suffer more adverse events to certain vaccines, such as oral polio vaccine and influenza vaccine, while males have more adverse events to other vaccines, such as yellow fever vaccine, suggesting the sex effect varies according to the vaccine given. The existing data hint at higher vaccine-related adverse events in infant males progressing to a female preponderance from adolescence, suggesting a hormonal effect, but this has not been confirmed.

If male and female immune systems behave in opposing directions then clearly analysing them together may well cause effects and responses to be cancelled out. Separate analysis by sex would detect effects that were not seen in the combined analysis. Furthermore, a dominant effect in one of the sexes might be wrongly attributed to both sexes. For drug and vaccine trials this could have serious implications.

Given the huge body of evidence that males and females are so different, why do most scientific studies fail to analyse by sex? Traditionally in science the sexes have been regarded as being equal and the main concern has been to recruit the same number of males and females into studies. Adult females are often not enrolled into drug and vaccine trials because of the potential interference of hormones of the menstrual cycle or risk of pregnancy; thus, most data come from trials conducted in males only. Similarly, the majority of animal studies are conducted in males, although many animal studies fail to disclose the sex of the animals used. Analysing data by sex adds the major disadvantage that sample sizes would need to double in order to have sufficient power to detect significant sex effects. This potentially means double the cost and double the time to conduct the study, in a time when research funding is limited and hard to obtain. Furthermore, since the funders don’t request analysis by sex, and the journals do not ask for it, it is not a major priority in today’s highly competitive research environment.

It is likely that we are missing important scientific information by not investigating more comprehensively how males and females differ in immunological and clinical trials. We are entering an era in which there is increasing discussion regarding personalised medicine. Therefore, it is quite reasonable to imagine that females and males might benefit differently from certain interventions such as vaccines, immunotherapies and drugs. The mindset of the scientific community needs to shift. I appeal to readers to take heed and start to turn the tide in the direction whereby analysis by sex becomes the norm for all immunological and clinical studies. The knowledge gained would be of huge scientific and clinical importance.

Dr Katie Flanagan leads the Infectious Diseases Service at Launceston General Hospital in Tasmania, and is an Adjunct Senior Lecturer in the Department of Immunology at Monash University in Melbourne. She obtained a degree in Physiological Sciences from Oxford University in 1988, and her MBBS from the University of London in 1992. She is a UK and Australia accredited Infectious Diseases Physician. She did a PhD in malaria immunology based at Oxford University (1997 – 2000). She was previously Head of Infant Immunology Research at the MRC Laboratories in The Gambia from 2005-11 where she conducted multiple vaccine trials in neonates and infants.

Dr Katie Flanagan’s editorial, ‘Sexual dimorphism in biomedical research: a call to analyse by sex’, is published in the July issue of Transactions of the Royal Society of Tropical Medicine and Hygiene. Transactions of the Royal Society of Tropical Medicine and Hygiene publishes authoritative and impactful original, peer-reviewed articles and reviews on all aspects of tropical medicine.

Subscribe to the OUPblog via email or RSS.
Subscribe to only health and medicine articles on the OUPblog via email or RSS.
Image credit: Man and woman arm wrestling, © g_studio, via iStock Photo.

The post Why are sex differences frequently overlooked in biomedical research? appeared first on OUPblog.

0 Comments on Why are sex differences frequently overlooked in biomedical research? as of 8/7/2014 4:28:00 AM
Add a Comment
2. World TB Day 2014: Reach the three million

By Timothy D. McHugh


Tuberculosis (TB) is a disease of poverty and social exclusion with a global impact. It is these underlying truths that are captured in the theme of World TB Day 2014 ‘Reach the three million: a TB test, treatment and cure for all’. Of the nine million cases of tuberculosis each year, one-third does not have access to the necessary TB services to treat them and prevent dissemination of the disease in their communities. The StopTB Partnership is calling for ‘a global effort to find, treat and cure the three million’ and thus eliminate TB as a public health problem. So is the scientific community making sufficient progress to realise this target?

Early diagnosis is a cornerstone of management of the individual and we know that as the disease progresses and the bacterial load and severity of disease increase, the likelihood of a poor outcome is exacerbated. It is important to distinguish between diagnosis of tuberculosis and detection, which is confirmation of the presence of mycobacteria. Diagnosis for the three million (and many more) is largely dependent on the clinical expertise of the healthcare worker, with minimal input from technology. Whereas detection requires input from microbiological services and the principal tool in this area is sputum smear microscopy. A sputum sample with no evidence of acid fast bacilli is the accepted predictor of low risk of transmission, and so early application is critical in the management pathway. With improvements such as the auramine stain and LED fluorescent microscopy, the smear remains a cost effective component of TB screening programmes. The emergence of multi-drug resistant tuberculosis has accentuated the need for prompt confirmation of drug susceptibility and this is where molecular tools have potential impact. The WHO supported roll out of GeneXpert in resource poor settings is going ahead and we are seeing change in practice, but it is too soon to determine the public health impact of this innovation. The challenge for microbiology is not to get drawn into a ‘one size fits all’ solution. In many settings, the low technology, low cost and rapid screening of smears serves to break the chain of transmission of drug sensitive tuberculosis. Whereas, in areas of high endemicity of drug resistant TB, such as South Africa, an equally fast indication of drug resistance is essential.

Photo by WHO/Jean Cheung

Photo by WHO/Jean Cheung

Diagnosis leads to treatment. TB is curable but treatment regimens are long, toxic and complex to deliver. Following the stakeholders meeting in Cape Town in 2000 there has been a major effort to open up the drug development pipeline. There are two aspects to this, firstly new agents and secondly clinical trials. There is a new enthusiasm for exploring new compounds with action against TB and the publication of the whole genome of Mycobacterium tuberculosis allowed the interrogation of its biochemistry, opening the door for medicinal chemists to contribute their expertise. The development of MDRTB has led us to reconsider compounds previously excluded as too toxic or too difficult to administer; these drugs, such as PAS and thioridazene, are now being re-visited or forming the basis of fresh iterations of chemical screening programmes. After 30 years of no new drugs for TB treatment, two phase 3 trials (RIFAQUIN and OFLATUB) were reported in 2013 and a third (REMoxTB) is expected to report shortly. These studies have shaken things up. They each have potential to make improvements in TB treatment. However, it could be argued that their real benefit lies in the development of a network of facilities capable of undertaking TB clinical trials, as exemplified by the Global Alliance for TB Drug Development and the EDCTP funded PanACEA consortium, and their contribution to the active debate about how to efficiently deliver clinical trials that have a real impact on individuals and populations. We are now looking outside the world of TB and to, for example, cancer trial methodology for innovations such as the multi-arm multi-stage (MAMS) approach. A significant challenge here is to convert the results of studies undertaken, with the aim of full regulatory approval, into the rather more complex environment of programmatic delivery.

The host-pathogen interaction for M. tuberculosis is manifest in the pathology of tuberculosis and has proven to be a fruitful area of immunological research. This, together with the (variable) success of BCG vaccination, has led us to the reasonable expectation of a vaccine for control of tuberculosis. There has been much innovation in this area and new studies are in the pipeline. The quest for immunological markers of disease continues. Useful diagnostic tools for latency have been developed in the shape of IGRA tests (Tuberculosis: Diagnosis and Treatment), but, more importantly, recent advances lead us to the idea that we may be able to define a host response signature to tuberculosis. If successful, this approach may allow us to select those patients for whom a shorter course of therapy is adequate. From the UK MRC studies it was clear that as many as 80% of patients would be cured with a four-month regimen; the difficulty was that they could not be identified in advance or during treatment. A host response biomarker may well enable us to address this issue.

M. tuberculosis is a fascinating organism with many features of its biology that are distinct from other bacteria. For this reason the TB research community has become rather insular, not necessarily drawing on the experience from the wider bacteriology community. This was further exacerbated by the apparent fall in incidence of TB through the 1960s and 70s. Complacency is the term that comes to mind. Despite the commitment of groups such as those led by Mitchison and Grossett, there has been very little innovation in detection and diagnosis, and no new drug introduced to first line treatment after the 1960s. The declaration by WHO of TB as a global health emergency alerted us to the need for new ideas and new tools to meet this challenge. Twenty years down the line, we have rolled out new diagnostics and a new drugs pipeline that flows with the first phase 3 trials reporting shortly. Similarly, innovation in vaccine design and application moves forward and importantly our understanding of operational and behavioural aspects of controlling TB increases. However, we must not become complacent again. M. tuberculosis is not just an academic challenge and as long as the three million exist, we need to focus all our knowledge to achieve a TB test, treatment and cure for all.

Timothy D. McHugh is Professor of Medical Microbiology at the Centre for Clinical Microbiology, University College London. This is an adapted version of Professor McHugh’s commentary for the Transactions of the Royal Society of Tropical Medicine and Hygiene.

The Transactions of the Royal Society of Tropical Medicine and Hygiene publishes authoritative and impactful original, peer-reviewed articles and reviews on all aspects of tropical medicine.

Subscribe to the OUPblog via email or RSS.
Subscribe to only health and medicine articles on the OUPblog via email or RSS.
Image credit: From the TB in Brazil series by WHO/Jean Cheung. Via the Stop TB Partnership.

The post World TB Day 2014: Reach the three million appeared first on OUPblog.

0 Comments on World TB Day 2014: Reach the three million as of 3/24/2014 4:21:00 AM
Add a Comment