What is JacketFlap

  • JacketFlap connects you to the work of more than 200,000 authors, illustrators, publishers and other creators of books for Children and Young Adults. The site is updated daily with information about every book, author, illustrator, and publisher in the children's / young adult book industry. Members include published authors and illustrators, librarians, agents, editors, publicists, booksellers, publishers and fans.
    Join now (it's free).

Sort Blog Posts

Sort Posts by:

  • in
    from   

Suggest a Blog

Enter a Blog's Feed URL below and click Submit:

Most Commented Posts

In the past 7 days

Recent Posts

(tagged with 'wavefunction')

Recent Comments

Recently Viewed

JacketFlap Sponsors

Spread the word about books.
Put this Widget on your blog!
  • Powered by JacketFlap.com

Are you a book Publisher?
Learn about Widgets now!

Advertise on JacketFlap

MyJacketFlap Blogs

  • Login or Register for free to create your own customized page of blog posts from your favorite blogs. You can also add blogs by clicking the "Add to MyJacketFlap" links next to the blog name in each post.

Blog Posts by Tag

In the past 7 days

Blog Posts by Date

Click days in this calendar to see posts by day or month
new posts in all blogs
Viewing: Blog Posts Tagged with: wavefunction, Most Recent at Top [Help]
Results 1 - 1 of 1
1. Quantum Theory: If a tree falls in forest…

By Jim Baggott

 

If a tree falls in the forest, and there’s nobody around to hear, does it make a sound?

For centuries philosophers have been teasing our intellects with such questions. Of course, the answer depends on how we choose to interpret the use of the word ‘sound’. If by sound we mean compressions and rarefactions in the air which result from the physical disturbances caused by the falling tree and which propagate through the air with audio frequencies, then we might not hesitate to answer in the affirmative.

Here the word ‘sound’ is used to describe a physical phenomenon – the wave disturbance. But sound is also a human experience, the result of physical signals delivered by human sense organs which are synthesized in the mind as a form of perception.

Now, to a large extent, we can interpret the actions of human sense organs in much the same way we interpret mechanical measuring devices. The human auditory apparatus simply translates one set of physical phenomena into another, leading eventually to stimulation of those parts of the brain cortex responsible for the perception of sound. It is here that the distinction comes. Everything to this point is explicable in terms of physics and chemistry, but the process by which we turn electrical signals in the brain into human perception and experience in the mind remains, at present, unfathomable.

Philosophers have long argued that sound, colour, taste, smell and touch are all secondary qualities which exist only in our minds. We have no basis for our common-sense assumption that these secondary qualities reflect or represent reality as it really is. So, if we interpret the word ‘sound’ to mean a human experience rather than a physical phenomenon, then when there is nobody around there is a sense in which the falling tree makes no sound at all.

This business about the distinction between ‘things-in-themselves’ and ‘things-as-they-appear’ has troubled philosophers for as long as the subject has existed, but what does it have to do with modern physics, specifically the story of quantum theory? In fact, such questions have dogged the theory almost from the moment of its inception in the 1920s. Ever since it was discovered that atomic and sub-atomic particles exhibit both localised, particle-like properties and delocalised, wave-like properties physicists have become ravelled in a debate about what we can and can’t know about the ‘true’ nature of physical reality.

Albert Einstein once famously declared that God does not play dice. In essence, a quantum particle such as an electron may be described in terms of a delocalized ‘wavefunction’, with probabilities for appearing ‘here’ or ‘there’. When we look to see where the electron actually is, the wavefunction is said to ‘collapse’ instantaneously, and appears ‘here’ with a frequency consistent with the probability predicted by quantum theory. But there is no predicting precisely where an individual electron will be found. Chance is inherent in the collapse of the wavefunction, and it was this feature of quantum theory that got Einstein so upset. To make matters worse, if the collapse is instantaneous then this implies what Einstein called a ‘spooky action-at-a-distance’ which, he argued, appeared to violate a key postulate of his own special theory of relativity.

So what evidence do we have for this mysterious collapse of the wavefunction? Well, none actually. We postulate the collapse in an attempt to explain how a quantum system with many different possible outcomes before measurement transforms into a system with one and only one result after measurement. To Irish physicist John Bell this seemed to be at best a confidence-trick, at worst a fraud. ‘A theory founded in this way on arguments of manifestly approximate character,’ he wrote some years later, ‘howe

0 Comments on Quantum Theory: If a tree falls in forest… as of 1/1/1900
Add a Comment